# Help Bruno 03-09-2021
# Own thoughts: Why not use k-means clustering to determine portfolio size.
library(tidyverse)
library(lubridate)
df = readxl::read_xlsx(choose.files())
df = df %>%
select(Px, Rule, `Stop Trigger`)
test = df[, 1]
test2 = test %>%
mutate(Rule = NaN,
Stop = NaN)
test2[1, 2] = 1
test2[1, 3] = test2[1, 1]
test2 = data.frame(Px = rnorm(2500, 100, 15),
Cash = rnorm(2500, 100, 2))
temp = data.frame(test2$Px, test2$Cash)
Rets = (temp[-1, ]/temp[-nrow(temp), ])-1
Brunos_rule = function(Px, Cash, start_rule, Bear, Bull){
temp = data.frame(Px, Cash)
Rets = (temp[-1, ]/temp[-nrow(temp), ])-1
df = data.frame(Px) %>%
mutate(Rule = NaN,
Stop = NaN)
df$Rule = start_rule
df$Stop = df[1, 1]
for(x in 2:nrow(df)){
if(df$Rule[x-1] == 1){
df$Rule[x] = if_else(df$Px[x] <= df$Stop[x-1]*(1+Bear), 0, df$Rule[x-1])
df$Stop[x] = if_else(df$Rule[x] != df$Rule[x-1], df$Px[x], max(df$Stop[x-1], df$Px[x]))
} else{
df$Rule[x] = if_else(df$Px[x] > df$Stop[x-1]*(1+Bull), 1, df$Rule[x-1])
df$Stop[x] = if_else(df$Rule[x] != df$Rule[x-1], df$Px[x], min(df$Stop[x-1], df$Px[x]))
}
}
Ans = if_else(df$Rule[-1] == 1, Rets$Px, Rets$Cash)
return(Ans)
}
library(tictoc)
tic()
Brunos_rule(test2$Px, test2$Cash, 1, -0.05, 0.05)
toc()
bears = seq(-0.2, -0.05, 0.025)
bulls = seq(0.05, 0.2, 0.025)
combinations = as.data.frame(t(expand.grid(bears, bulls)))
names(combinations) = paste0("Bear", rep(bears, 7), "/Bulls", rep(bulls, each = 7))
results = map_dfc(combinations, function(x){
ans = Brunos_rule(test2$Px, test2$Cash, 1, x[1], x[2])
})
example = results %>%
mutate(Date = ymd("2000-01-01") + 1:2499, .before = 1) %>%
gather(key = "iteration", value = "Returns", -1)
ggplot(example, aes(x = Date, y = Returns, colour = iteration))+
geom_line()+
guides(color = "none")