rm(list = ls()) library(tidyverse) Directory = "D:/Dropbox/Dropbox/Wits 2021/FINE4020/R Group Project/EPL/" Season_1011 <- read_csv(paste0(Directory, "season-1011_csv.csv"), col_types = "cDcciiciicciiiiiiiiiiii") # Season_1011 <- read_csv(paste0(Directory, "season-1011_csv.csv")) RefStats1011 <- Season_1011[,c(2,11,16,17,20,21,22,23)] RefStats1011[,3:8] <- sapply(RefStats1011[,3:8], as.numeric) Referees1011 <- unique(Season_1011$Referee) # Referees1011 <- Season_1011 %>% # count(Referee) %>% # select(1) Marriner1011 <- RefStats1011[(which(RefStats1011$Referee==Referees1011[1,])),] karabo_method = function(name, df = RefStats1011){ df = df %>% filter(Referee == name) Fouls <- sum(df[,3:4]) Yellows <- sum(df[,5:6]) Reds <- sum(df[,7:8]) YellowRatio <- Yellows/Fouls RedRatio <- Reds/Fouls Games <- length(df[,1]) Ref <- df[2,2] RefTable <- c(Ref, Games, Fouls, Yellows, Reds, YellowRatio, RedRatio) return(RefTable) } Marriner1011Summary <- karabo_method("A Marriner") Ref_Summary <- map_dfr(Referees1011, karabo_method) Ref_Summary <- RefStats1011 %>% group_by(Referee) %>% summarise(Fouls = sum(AF, HF), Yellows = sum(HY, AY), Reds = sum(HR, AR), Games = n()) %>% mutate(YellowRatio = Yellows/Fouls, RedRatio = Reds/Fouls)