from tensorflow.keras import Sequential from tensorflow.keras.layers import Conv2D, Flatten, Dense, AvgPool2D import matplotlib.pyplot as plt import numpy as np features_train = np.load('/datasets/fashion_mnist/train_features.npy') target_train = np.load('/datasets/fashion_mnist/train_target.npy') features_test = np.load('/datasets/fashion_mnist/test_features.npy') target_test = np.load('/datasets/fashion_mnist/test_target.npy') features_train = features_train.reshape(-1, 28, 28, 1) / 255.0 features_test = features_test.reshape(-1, 28, 28, 1) / 255.0 model = Sequential() model.add(Conv2D(6, (5, 5), padding='same', activation='tanh', input_shape=(28, 28, 1))) model.add(AvgPool2D(pool_size=(2, 2))) model.add(Conv2D(16, (5, 5), padding='valid', activation='tanh')) model.add(AvgPool2D(pool_size=(2, 2))) model.add(Flatten()) model.add(Dense(120, activation='tanh')) model.add(Dense(84, activation='tanh')) model.add(Dense(10, activation='softmax')) model.compile(loss='sparse_categorical_crossentropy', optimizer='sgd', metrics=['acc']) model.summary() model.fit(features_train, target_train, epochs=1, verbose=1, steps_per_epoch=1, batch_size=1)